

What Activity Monitors Can and Cannot Do Today

AMVPQ – ARC Pre-Congress Seminar – Vetoquinol

Château Bromont, Bromont, QC September 28, 2023

R.L.A. Cerri, S. Moore, J. Marques, R. Conceição, A. Boyle, A. Bega, J. Denis-Robichaud, A. Madureira, T. Burnett, C. Baes, S. Leblanc, W. Heuwieser, S. Borchardt

Applied Animal Biology Dairy Education and Research Centre University of British Columbia, Vancouver

Outline

- Context
 - Validations
- Alerts and Intensity of Estrus
 - Programs (AI)
 - Associations with fertility (AI and ET)
- Interventions
 - Health data
 - Estrus prior to VWP
 - GnRH at Al
 - Genetic selection

Precision Dairy Farming

Accelerometers + Rumination + GPS

Video Analysis

Pedometers + Lying time

Accelerometers + Rumination + Feeding time

Accelerometers + Rumination

Hardware and Software

- Sensor breaking
- Lost data
 - Caused by sensor malfunction
 - Caused by communication failure (wi-fi)
- Battery issues
- Reliability of alerts
- Integration
 - With other systems
 - Internal optimization

Activity Monitoring System Efficacy

Pedometry

		CL regression only		
		Positive	Negative	
Pedometry	Positive	93	0	
	Negative	43	29	
Measure		%		
Se		68.4		
Sp		100.0		
PPV		100.0		
NPV		40.3		
Accuracy		73.9		

CL Reg. and Ovulation

PositiveNegativePositive921Negative1953

Measure	%
Se	82.9
Sp	98.1
PPV	98.9
NPV	73.6
Accuracy	87.9

Vilar et al. (University of Florida unpublished results)

Can we use sensors to detect resumption of cyclicity?

- 42.2 % of cows false negative
- 15.9 % of cows false positive
- Specificity 84.0 %
- Sensitivity 34.1 %

High specificity – effective detecting anovular cows Low sensitivity – not effective detecting cyclic cows

Outline

- Context
 - Validations
- Alerts and Intensity of Estrus
 - Programs (AI)
 - Associations with fertility (AI and ET)
- Interventions
 - Health data
 - Estrus prior to VWP
 - GnRH at Al
 - Genetic selection

Burnett et al., 2017. J. Dairy Sci. 100:5005-5018

- Both reproduction programs had similar P/AI
- Breeding upon estrus or TAI generated similar P/AI
- Anovulation and health issues is more detrimental to estrus-based programs

Burnett et al., 2017. J. Dairy Sci. 100:5005-5018

Denis-Robichaud et al., 2018. J. Dairy Sci. 101:624-636

Possible to achieve top reproductive efficiency by optimizing detection of estrus

J. Dairy Sci. 97:4296–4308 http://dx.doi.org/10.3168/jds.2013-7873 © American Dairy Science Association[®], 2014.

- VWP
 - Allowance for estrus detection
- Different Synch Protocols
 - Presynch/Ovsynch/Extras
- P/AI at 1st AI
 - Effect of DIM
- P/AI at 200 DIM and Days Open
 - Effect of several inseminations

of nonpregnant dairy cows at detected estrus resulted in similar reproductive performance to a program that favored timed artificial insemination

M. Masello,¹ B. Ceglowski,² M. J. Thomas,² and J. O. Giordano¹* ¹Department of Animal Science, Cornell University, Ithaca, NY 14853 ²Dairy Health and Management Services, Lowville, NY 13367 n

Reproduction Programs

DAIRY CATTLE REPRODUCTION COUNCIL

http://www.dcrcouncil.org/

Take Home Messages

- * The combination of Estrus based AI and Timed AI still is the best approach.
 - * Performance and economics.
- Further studies on identification of selective populations for TAI intervention are still underway.
 Decreasing interventions is likely the way to go.

Outline

- Context
 - Validations
- Alerts and Intensity of Estrus
 - Programs (AI)
 - Associations with fertility (AI and ET)
- Interventions
 - Health data
 - Estrus prior to VWP
 - GnRH at Al
 - Genetic selection

Intensity and Duration of Estrus

Pregnancy per AI – Canada Spontaneous Estrus

Distribution of P/AI according to peak activity during estrus:

P/AI (%) according to categories of peak activity during estrus:

Pregnancy per Al – Germany Spontaneous Estrus

Pregnancy per AI – Brazil ECP Induced Estrus

Distribution of P/AI according to peak activity during estrus:

P/AI (%) according to categories of peak activity during estrus:

Distribution of pregnancy losses (%) according to relative increase in activity during estrus

Relative Increase in Activity (%)

Madureira et al., 2019. J. Dairy Sci. 102:3598-3608

Increased Percent Viable Embryos

Madureira et al., 2020. J Dairy Sci. 103:5641-5646

Increased Pregnancy per Embryo Transfer

Madureira et al., 2020. J Dairy Sci. 103:5641-5646

Dairy heifers between 10 -12 months old Superovulation Protocol Results

• Estrous expression and embryo

No effect on embryo stage (P = 0.32) or quality grades (P = 0.45).

However, the total number of embryos recovered 7d post-AI was found to be affected by estrus expression measurements (P < .0001).

Take Home Message

- Estrus is indeed important for fertility
- Not all estruses are equal
- Intensity of estrus and duration (captured by activity monitors) have a direct association on P/AI
- Association with P/AI, P/ET and pregnancy loss

Outline

- Context
 - Validations
- Alerts and Intensity of Estrus
 - Programs (AI)
 - Associations with fertility (AI and ET)
- Interventions
 - Health data
 - Estrus prior to VWP
 - GnRH at Al
 - Genetic selection

Heat Detection and Intensity in Cows Diagnosed with Endometritis

74.7% of animals with endometritis did not display estrus by 30 DIM

Madureira et al., 2017. J. Dairy Sci

Foot and Leg Problems Reduced Heat Detection by Automated Monitors

Burnett et al., 2018. J. Dairy Sci.

Outline

- Context
 - Validations
- Alerts and Intensity of Estrus
 - Programs (AI)
 - Associations with fertility (AI and ET)
- Interventions
 - Health data
 - Estrus prior to VWP
 - GnRH at Al
 - Genetic selection

J. Dairy Sci. 104:9195–9204 https://doi.org/10.3168/jds.2020-19705 © 2021 American Dairy Science Association[®]. Published by Elsevier Inc. and Fass Inc. All rights reserved.

Association of estrous expression detected by an automated activity monitoring system within 40 days in milk and reproductive performance of lactating Holstein cows

S. Borchardt,¹* ^(b) C. M. Tippenhauer,¹ ^(b) J.-L. Plenio,² ^(b) A. Bartel,² ^(b) A. M. L. Madureira,³ ^(b) R. L. A. Cerri,³ ^(b) and W. Heuwieser¹ ^(b)

¹Clinic of Animal Reproduction, Freie Universität Berlin, Königsweg 65, 14163, Berlin, Germany
 ²Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Königsweg 67, 14163, Berlin, Germany
 ³Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada V6T 1Z4

Pregnancy per Al at 1st Al According to Estrus Detection before 30 DIM

Madureira et al., 2017. J. Dairy Sci

Outline

- Context
 - Validations
- Alerts and Intensity of Estrus
 - Programs (AI)
 - Associations with fertility (AI and ET)
- Interventions
 - Health data
 - Estrus prior to VWP
 - GnRH at Al
 - Genetic selection

Reduced estrous expression resulted in more failed ovulations

Burnett et al., 2018. J. Dairy Sci. 101:11310-11320.

Ovulation rate from cows with different intensity of activity at the moment of estrus Induced estrus (ECP)

Dealing with Ovulation

- GnRH would help cows with low estrous expression but would not impact those with high estrous expression
- Enrolled cows on three different farms
 Created 4 groups based on estrous expression and administration of GnRH at breeding:
 - ✓ High estrous expression WITH GnRH
 - ✓ High estrous expression WITHOUT GnRH
 - $\checkmark\,$ Low estrous expression WITH GnRH
 - ✓ Low estrous expression WITHOUT GnRH

Results - All Farms

Burnett et al., 2022. J. Dairy Sci. 105:1743-1753

Take Home Messages

- * Automated records of postpartum estrus episodes could be used for management decisions
- Addition of GnRH at AI in cows detected in estrus seems to significantly increase P/AI. More so in estrus episodes of Low intensity
- The use of sensor data to select recipient cows can be a practical tool to improve P/ET or other valueadded technology

http://www.resilientdairy.ca/

Factors that may help explain why high intensity estrus was associated with increased fertility at AI and ET

- Follicle and estradiol? Weak to no association
- Endometrium/Early embryo? Yes/ Association to estrus
- Progesterone? Yes/Cause-Effect
- Ovulation? Yes/Association

Ovarian and Conceptus Parameters Associated with Estrous Expression - Day 19 of Gestation

Parameteres	Estrus cows	Non-Estrus cows	P -value
Body condition score $(1 - 5 \text{ scale})$	3.30 ± 0.10	3.45 ± 0.10	0.10
Follicle diameter (mm)	14.0 ± 1.0	14.2 ± 1.0	0.89
Progesterone on d 7 (ng/mL)	3.8 ± 0.9	5.2 ± 1.0	0.34
Progesterone on d 18 (ng/mL)	3.9 ± 0.7	4.4 ± 0.8	0.62
Corpus luteum diameter on d 7 (cm)	6.9 ± 0.8	8.8 ± 0.8	0.10
Corpus luteum diameter on d 18 (cm)	10.5 ± 1.0	9.4 ± 1.0	0.45
Conceptus length (cm)	38.3 ± 2.8	28.2 ± 2.9	0.02
IFNT concentration (pg/mL)	8.3 ± 1.7	10.2 ± 1.9	0.47
	2		

Davoodi et al., 2016. Theriogenology 85:645-655

Concentration of P4 according to the intensity of estrus

Intensity of Estrus by Treatment

Conceição et al., 2023 in preparation

Effect of Progesterone Treatment on Estrous Expression in Heifers

Main Objectives

Ovulation Timing

Alert to Ov: HR=0.21 p=0.49

ECP to Ov: HR=0.60 p=0.06

Estrous Expression

PG to Alert: HR = 2.12, 95% CI = 1.14-3.95;

P = 0.02

P4 on d 0

P4 was lower after the high treatment than the treatment

P4 on d 7

There was no difference in P4 on d 7.

		PP			
Outcome	Treatment Classification	Marginal Means	SE	P-value	n
Relative Increase (index)	High	411.7	27.3	0.04	22
	Low	335.4	27.3		
Duration (hrs)	High	18.9	0.89	0.13	23
	Low	17.1	0.89		

Free SlideSalad Google Slides Template

Sisiidesalad

Boyle et al. \$12023 (in preparation)

Estrus-Sensor Phenotypes

Resumption of Cyclicity and DPR

Madureira et al., 2023 (submitted)

Resumption of Cyclicity + Diseases Postpartum and DPR

Madureira et al., 2023 (submitted)

Take Home Messages

- * Use of sensor data for genetic selection is promising. Potential for complex/low heritability traits (repro, health, thermotolerance).
- * Improvements over current reproduction phenotypes is likely.
 - * Biological significance of the data collected.

Acknowledgments

Mitacs

Globalink

GenomeCanada

CHANGING LIVES IMPROVING LIFE

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Thank you!

Thank you! Questions