Transition Period Health and Reproduction: Preparing for a Successful Pregnancy

Stephen LeBlanc

Transition health problems are common But healthy cows have good fertility

Table 2. Inspect of bacitle problems in the first 60 dispectment up

Table 2. Impact of health problems in the first of a postpartum on pregnancy at first postpartum Afor dairy cows				
Health status	Prevalence	Pregnant, %	Adjusted OR (95% CI) ²	Р
Health problem				
Healthy	56	51.4	1.00	
1 case of disease	27	43.3	0.79 (0.69 – 0.91)	0.001
> 1 case of disease	17	34.7	0.57 (0.48 – 0.69)	< 0.001
Type of health problem ³				
Calving problem	15	40.3	0.75 (0.63 – 0.88)	< 0.001
Metritis	16	37.8	0.66 (0.56 - 0.78)	< 0.001
Clinical endometritis	20	38.7	0.62 (0.52 - 0.74)	< 0.001
Fever postpartum	21	39.8	0.60 (0.48 - 0.65)	< 0.001
Mastitis	12	39.4	0.84 (0.64 - 1.10)	0.20
Clinical ketosis	10	28.8	0.50 (0.36 - 0.68)	< 0.001
Lameness	7	33.3	0.57 (0.41 – 0.78)	< 0.001
Pneumonia	3	32.4	0.63 (0.32 - 1.27)	0.20
Digestive problem	2	36.7	0.78 (0.46 - 1.34)	0.38

5719 cows in 7 US herds

Santos et al RepDomRum 2010

reamenes, at first peets arture All of dain, source

Transition health problems are common

Downloaded from http://injuryprevention.bmj.com/ on March 24, 2015 - Published by group.bmj.com

Brief report

Economic burden of time lost due to injury in NHL hockey players

Laura Donaldson,^{1,2} Bing Li,³ Michael D Cusimano^{1,2}

ABSTRACT

Objective To determine the economic burden of salary costs lost due to injury in the National Hockey League (NHL). **Methods** All NHL players who engaged in at least one regular season game during the 2009–2010 to 2011–2012 seasons comprised the study population. We performed a retrospective cross-sectional analysis of publically available media sources to collect injury and salary data. Outcome measurements were games missed during regular season play due to hockey-related injury and lost salary.

Results A total of 50.9% of all NHL players missed at least one game within a season of play, and injuries represented a total salary cost of approximately US\$218 million per year. Concussions alone amounted to a salary

Data collection

Data sources

Full rosters and the number of games participated in by each player were obtained from the NHL website (http://www.nhl.com). Injury data were obtained from nhl.com, and official team injury reports. When more information was required, a variety of other publically available sources including The Sports Network (http://www.tsn.com), Yahoo Sports (http://sports. yahoo.com) and Rotoworld (http://www.rotoworld. com) were consulted. Annual player salaries (US\$) were obtained from http://www.capgeek.com.

The increasing popularity of fantasy sports has resulted in a huge demand for information on the

571

published online only. To view please visit the journal online (http://dx.doi.org/10.1136/ injuryprev-2013-041016).

¹Division of Neurosurgery and Injury Prevention Research Office, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada ²Canadian Brain Injury and Violence Research Team, Toronto, Ontario, Canada ³Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada

Transition sets the stage for fertility

126 herds in Quebec, Canada

Herd prevalence threshold (estimated from 20 cows)	Herd pregnancy at 1 st AI < 40%	Herd pregnancy loss > 5%
RP	-	≥ 5%
Ketosis (<u>tested only once</u> 1-14 DIM)	≥ 12%	-
PVD	≥ 5%	≥ 5%
Endometritis (cytobrush)	≥ 19%	-
Anovular (blood P4 30-44 and 44-57 DIM)	≥ 21%	-
DA	≥4 %	-

Effect of disease in early lactation on reproduction

- Data from 1 freestall herd in Florida
- All cows that calved in 2012 (data on n = 4333)

Effect of transition disease on reproduction

- 1 year cohort of 1946 calvings from 1 farm in Germany
- Survival analysis and machine learning on same data
- Greater effects of disease in multiparous cows: all reduced pregnancy rate

Pascottini et al 2020 https://doi.org/10.1016/j.prevetmed.2020.104908

Impacts of ketosis - Reproduction

Subclinical ketosis (serum BHB > 1.0 – 1.4 mmol/L) in early lactation is associated with:

• 3 X Increased risk of metritis (not in all studies)

Hammon et al 2006; Duffield et al 2009

 1.4 X greater odds of endometritis (uterine inflammation based on cytology) at 35 DIM

Dubuc et al 2011

1.5 X increased odds of being anovular (not cyclic) at 63 DIM (19% vs. 13% of cows)

Walsh et al 2007; Dubuc et al 2012

• Decrease in pregnancy at first Al

Walsh et al, 2007

• Point prevalence (20 cows, 1 test, BHB \geq 1.4 mmol/L) \geq 20% associated with herd annual pregnancy at 1st AI < 40%

Dubuc & Denis-Robichaud, 2017

 BHB > 1.2 mmol/L in any of 1st 5 weeks postpartum associated with lower 6week in-calf in pasture system (78 vs. 85%)

Compton et al 2015

Impacts of ketosis Reproduction

Reduced pregnancy rate until 165 DIM

Effects of ketosis depend on milk yield (or vice versa)

2091 cows from 5 herds in Minnesota 13,00 – 15,000 kg 305ME milk Blood BHB tested twice 3-10 DIM. HYK \geq 1.2 mmol/L 14% cumulative incidence (4 to 22% among herds) Week 1 milk ranked < 25th, 25-75th or > 75th percentile by parity within herd 4 herds Double Ovsynch for 1st AI; other PreSynch with HD, then TAI; then HD followed by Ovsynch

Effects of ketosis depend on milk yield (or vice versa)

	Estimates (95% CI)			
Events	Overall ¹	Low milk yield ²	Mid milk yield ²	High milk yield ²
Pregnancy to first Al ³ RR Pregnancy by 150 DIM ⁴ HR Calving-to-conception interval ⁵ Mean di	0.86 (0.70, 1.06) 0.83 (0.71, 0.97) ff, d 7.77 (3.34, 12.2)	0.62 (0.39, 0.98) 0.70 (0.51, 0.96) 13.03 (5.12, 20.9)	0.96 (0.73, 1.28) 0.90 (0.72, 1.13) 3.36 (–3.35, 10.10)	0.93 (0.64, 1.35) 0.87 (0.64, 1.17) 4.68 (-4.06, 13.40)

Rodriquez et al JDSC 2021

Ketosis treatment summary Gordon et al JDS 2017a,b

- Based on ketosis cure +1 and +2 weeks and milk yield to 30 DIM
- Blood BHB \geq 1.2 but < 2.4 mmol/L (or KetoTest = 100)

• Treat with 3 d glycol 300g 1X/day

• Blood BHB > 2.4 mmol/L (KetoTest \geq 200)

Treat with 5 d glycol

• If BHB > 1.2 mmol/L and glucose < 2.2 mmol/L (38% of cases)

Add treatment with Catosal or B12 (1.25 mg) for 3 d

- Re-test at end of treatment
- Addition of dexamethasone not recommended (Tatone et al 2016)

Once-daily milking (ODM) as treatment for ketosis

103 cows with blood BHB ≥ 1.2 mmol/L All got 5 d 300 g/d glycol, repeated up to 3X Assigned to 1X or 2X milking on AMS No difference in DMI Pregnancy at 1st AI (~85 DIM) ODM 45% TDM 30%

Williamson JDS 2022

Consentini et al Animals 2021 doi.org/10.3390/ ani11020301

Production and BCS associations with cyclicity and pregnancy

- 6396 cows in 4 herds in California; all on PreSynch with estrus detection
- Average milk to 90 DIM
 - Lact 1 = 34 k g/d Lact \ge 2 = 48 kg/d
- Mean BCS(calving) = 3.25; AI = 2.75-3.0
- P4 at 51 and 63-65 DIM
- Pregnancy diagnosis at 30 and 58 d

Production and BCS associations with cyclicity and pregnancy

Ovulatory at 65 DIM

- Accounting for farm, parity, season
 - BCS < 3 at calving or AI, or loss > 1 point associated with ψ probability of cyclicity

Milk yield

- Q1 32 kg/d 73% ovulatory (P < .05)
- Q2 39 kg/d 78%
- Q3 44 kg/d 78%
- Q4 50 kg/d 75%

Production and BCS associations with cyclicity and pregnancy

Probability of pregnancy at first AI (30 d or 58 d)

- Accounting for farm, parity, cyclic @65 DIM, HD vs. TAI, season
- No association of milk yield (~ 38%)
- BCS < 3 at calving or AI, or loss > 1 point associated with \oint pregnancy <u>Pregnancy loss 30 to 58 d</u>
- Accounting for farm, parity, cyclic @65 DIM, HD vs. TAI, season
- No association of milk yield (~ 12%)
- Increasing loss with lower BCS at calving or AI and especially BCS loss

Association of BCS change from week 1 to week 3 in lean cows

2 herds in Wisconsin – Double Ovysnch for 1st AI for all cows NB similar directions but large between-farm differences Carvalho et al JDS 2014 doi.org/ 10.3168/jds.2013-7809

Confounding effects of health?

		$BCS change^1$		
Item	Lost	Maintained	Gained	BCS change
All cows				
% of cows (n/total no.)	41.8 (789/1,887)	35.8(675/1,887)	22.4 (423/1,887)	
P/AI at 40 d [% (no./total no.)]	$25.1 (198/789)^{c}$	$38.2(258/675)^{b'}$	$83.5(353/423)^{a}$	< 0.001
P/AI at 70 d [% (no./total no.)]	22.8 (180/789) ^c	$36.0(243/675)^{\rm b}$	$78.3(331/423)^{a}$	< 0.001
Pregnancy loss [% (no./total no.)]	9.1 (18/198)	5.8(15/258)	6.2(22/353)	0.34
BCS at parturition	2.93 ± 0.01^{a}	$2.89 \pm 0.02^{\rm b}$	$2.85 \pm 0.02^{\rm b}$	0.005
BCS at 21 DIM	$2.64 \pm 0.01^{\circ}$	$2.89 \pm 0.02^{\rm b}$	$3.10 \pm 0.02^{\rm a}$	< 0.001
$ECM^2 (kg/d)$	30.9 ± 0.4	31.5 ± 0.4	28.7 ± 0.4	0.30

Which cows lose condition?

- BCS \geq 3.25 at calving very likely to lose condition
- BCS \leq 3.0 at calving ~ 60% maintained or gained condition
- BCS loss associated with health problems
- More data needed to distinguish time order and causality
- (n = 245 cows, 1 farm, Brazil Barletta et al Therio 2017)

Risk factors for uterine disease

- Species of bacteria
 - Virulence factors
 - $_{\circ}$ Strain
- Level of contamination

 Diversity of the uterine microbiome

Bacteria

- Dry matter intake
- Energy and lipid
 metabolic health
- Stressors & hormonal changes
- $_{\circ}$ Hypocalcemia

Immune response Regulation of inflammation

Concepts of inflammatory response

Uterine Disease and Infertility

Gilbert JDS 2019

Mechanisms of uterine disease effects on fertility B DNO UTD OUTD OUTD

Bromfield et al., 2015

Ribeiro et al., 2016

Follicular development occurs over 2 to > 4 months

Britt hypothesis (1992)

Ewe model - Scaramuzzi et al RFD 2011

Reproductive tract infection and inflammation

Reproductive tract inflammatory disease

- PVD ≠ endometritis
 - Poor agreement (42% of cows with PVD had concurrent endometritis; Dubuc et al 2010a)
 - Different risk factors (Dubuc et al 2010b)
 - Additive effects on reproduction and pregnancy loss (Dubuc et al 2010; Lima et al 2013)
 - Cervicitis is a co- or independent factor in many cases

Effect of PVD

- Observational study, 3 herds in Australia
- Diagnosis at ~35 DIM
- Despite treatment with PGF (repeated at ~ 55 DIM if still clinical)

Treatment of PVD or endometritis with IU cephapirin

2259 cows Examined at 35 \pm 7 DIM by Metricheck and cytobrush

Denis-Robichaud & Dubuc, 2015

1 vs 2 IU treatments for PVD or endometritis

Dubuc et al

Cate	egorv
~~~~	8011

JDS 2021 Overall Purulent vaginal discharge Endometritis doi.org/10. Unaffected CEPH1X CEPH2X CEPH2X CEPH1X CEPH2X Item CEPH1X 3168/jds.20 Ν 52251677278520-19537 1,9461,2941,301

## **PGF treatment of PVD**



## **Treatment of PVD** with PGF

- 2473 cows from 1 farm in Germany screened weekly with Metricheck at 32 DIM
- No effect on time to 1st Al

#### Lact=1

- No benefit, some harm for pregnancy at 1st Al
- Longer time to pregnancy Lact  $\geq 2$
- Increased pregnancy at 1st AI
- No difference in time to pregnancy







Prevalence of risk factors					
Retained placenta (RP)	10%	Lameness (49 d)	14%		
Haptoglobin at d6 (≥ 0.5 g/L)	48%	Acyclic by 49 d	15%		
Hyperketonemia (≥ 0.7 m <i>M</i> )	50-55%	BCS Loss (≥ 0.50 point by 63 d)	53%		
Endometritis (≥ 2.4% PMN)	44%	One clinical disease	<b>29%</b>		
Purulent vaginal discharge (PVD)	21%	Multiple clinical diseases	18%		

Tony Bruinjé PhD, U Guelph

## **Transition health and estrus detection**

- Prospective observational study in 2 commercial dairy herds in Ontario, Canada (~450 lactating cows each) from May 2019 to April 2021
- Prepartum Holstein cows (n = 1,357) were enrolled and examined
- 1st AI primarily based on detection of estrus by AAM from 50 to 75 d, or timed AI thereafter

#### **Transition health associations with estrus**





**ONLY RISK FACTORS DIAGNOSED ON FARM RP, PVD, lameness** BCS loss (≥ 0.50-point) 100 а 80· 82 b 69 С 60 -58 40 -46%) 32%) (Freq. 22%) 20 -(Freg. eq Ъ 0 None isk factor hactors 

- Elevated haptoglobin (HP):  $\geq 0.5$  g/L at 6 (± 2) DIM
- Hyperketonemia: ≥2 samples of BHB ≥0.9mM (4 DIM) or ≥0.7mM (8, 11, or 15 DIM)
- Endometritis: ≥ 2.4% PMN at 35 (± 3) DIM
- Delayed cyclicity: Acyclic by 49 (± 3) DIM
- BCS loss:  $\geq$  0.50-point loss from 3 wk prepartum to 9 wk postpartum vs. no loss

# Transition health associations with estrus and pregnancy





Tony Bruinjé PhD, U Guelph



⁻ Delayed cyclicity: Acyclic by 63 (± 3) DIM

- Risk factors diagnosed on pregnancy: Difficult calving, metritis, PVD, lameness, or BCS loss ( $\geq 0.50$ -point)

#### **Risk factors for reduced probability of estrus detection**



#### **Transition checklist** Goal: Optimize metabolic health & immune function

#### Means: Manage cows to maintain feed intake

#### Management

- Feed daily for 3-5% left over; ideally ≥ 2X/d
- $\geq$  75 cm (30") feed bunk space per cow
- $\leq$  85% cows: freestalls
- > 14 m² (130 ft²) of bedded pack/cow
- Build for 130-140% of average monthly calvings
- Large enough stalls; adaptation to stalls
- < 24 h in calving pen
- Minimize group changes
- Separate heifers if it does not violate the above
- Heat abatement (fans, soakers) when THI
   > 68
- BCS = 3.0 3.25 at calving
- Diagnose & treat PVD at 4-6 weeks

#### **Transition diet**

- 2-stage dry period; 3-4 weeks on close-up diet
- Meet but do not exceed E requirement 8 to 3 weeks prepartum; 1100 g MP per day
- Water ad lib; 10 cm linear per cow; 2 sources per pen
- Vitamin E: far-off: 1000 IU /d; close-up: 2000 IU/d; 0.3 ppm selenium (Ideally ~ 6 mg/d)
- DCAD < -100 mEq/kg; urine pH 6.0 6.5

#### Monitoring

- NEFA <0.3-0.4 in last week prepartum; <0.7-1.0 in week 1
- BHB < 0.8 mM in week -1
- BHB < 1.1 mM in week 1
- BHB < 1.2 mM weeks 2 3
- Ca > 2.15 mmol/l at 4 DIM

## Keep up with the latest research

dairyatguelph.ca



@DairyatGuelph

@DairyResearch1

